
QSS Server Developer’s Kit
(QSDK)

Reference Manual

June 1996

Version 2.0

© Quintessential School Systems (QSS), 1996
All Rights Reserved

1000 Marshall Street, Suite C, Redwood City, CA 94063
(415) 306-1600 Fax (415) 365-2706

Copyright
© 1996 by Quintessential School Systems. All rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in
any form by any means, without the express written permission of Quintessential School Systems.

QSS Server Developer’s Kit Reference Manual
Version 2.0
June 1996

Trademarks
QSS Server Developer’s Kit and QSDK are trademarks of Quintessential School Systems.

Windows is a trademark of Microsoft Corporation.

IBM PC is a registered trademark of International Business Machines Corporation.

HP 3000 is a trademark of Hewlett-Packard Company.

Printed in the United States of America.

Table of Contents

QSS Server Developer’s Kit . 1
Intended Audience . 2
What You'll Find In This Manual . 3

Overview of QSDK . 5
What’s In QSDK? . 6

Installing QSDK - HP 3000 . 7

Installing QSDK - PC . 7

Using QSDK . 8

QSDK Reference . 9
API Summary - Grouped by Typical Use . 9
API Summary - Alphabetical . 10
API - Specifications (parameter formats) . 12
API - Specifications (syntax) . 15

QSDK_CLOSE . 15
QSDK_CLOSE_SOCKET . 16
QSDK_CONN_ACCEPT . 17
QSDK_CONN_REJECT . 18
QSDK_CONNECT . 19
QSDK_CREATE_SERVER . 21
QSDK_CREATE_SOCKET . 23
QSDK_ENCRYPT . 25
QSDK_ERRMSG . 26
QSDK_FILE_XFR . 27
QSDK_GET_SOCKET . 29
QSDK_GIVEUP_SOCKET . 30
QSDK_INIT_PROCESS . 31
QSDK_IPC_D2B . 33
QSDK_KEYCRYPT . 34
QSDK_LISTEN . 35
QSDK_OPEN . 37
QSDK_PAUSE . 38
QSDK_READ . 39
QSDK_READTRAN . 41
QSDK_READ_MSG . 43

QSDK_SOCKET_SPECIAL . 44
QSDK_START_LISTENER . 46
QSDK_START_SERVER . 48
QSDK_WRITE . 49
QSDK_VERSION . 50
QSDK_WRITE_MSG . 51

Error Messages . 52

QSDK and Socket Primer . 55

Glossary of Basic Terms . 56

Concepts and Anecdotal Comments . 58

QSDK Samples - HP 3000 . 61

QSDK Samples - PC . 62

System Requirements - HP 3000 . 63

System Requirements - PC . 63

Super Listener/Listener/Server Anatomy . 65
Super Listener . 65
Listener . 65
Server . 66
Process Tree . 67

 Chapter 1 QSS Server Developer’s Kit

Version 2.0 6/96 © QSS, 1996 1 2 © QSS, 1996 Version 2.0 6/96

QSS Server Developer’s Kit (QSDK) Intended Audience

Welcome to QSS Server Developer’s Kit (QSDK) from Quintessential School Systems.

QSDK is a software developer’s toolkit that enables you to easily develop client/server
applications for your HP 3000 using TCP socket technology.

With the QSS Server Developer’s Kit you (a software developer) can:

Easily create network daemons and servers using the common programming languages
found on the HP 3000 (COBOL, Pascal, etc).

Deploy client/server applications without costly run-time or per-seat charges.

Take your existing TurboImage applications and integrate them into a client/server
architecture.

Write servers which work seamlessly with client applications written in the popular
RAD tools (VB, Delphi).

Concentrate on developing your application without worrying about the details of
network TCP programming.

Chapter 1 QSS Server Developer’s Kit

This guide is intended for software developers/managers who are developing/managing
client/server applications for the HP 3000 using TCP sockets. This guide assumes you are
familiar with HP 3000 system operations and software development terms.

This guide has been prepared using COBOL as the calling language.

 Chapter 1 QSS Server Developer’s Kit

Version 2.0 6/96 © QSS, 1996 3 4 © QSS, 1996 Version 2.0 6/96

What You'll Find In This Manual

This manual contains the following information, organized by chapter, to assist you in
installing and using the QSS Server Developer’s Kit (QSDK):

Chapter 1: "Welcome to QSS Server Developer’s Kit - QSDK" , Introduction to QSDK
and what this manual is about.

Chapter 2: "Overview of QSDK" , A brief tour of what makes up QSDK.

Chapter 3: "Installing and Using QSDK" , How to install and use QSDK.

Chapter 4: "QSDK Reference" , How to call the routines contained in QSDK.

Chapter 5: "QSDK and Socket Primer" , Background information on QSDK and the
concepts of TCP socket programming .

Chapter 6: "QSDK Samples" , A description of sample programs supplied with QSDK.

Chapter 7: "System Requirements" , A discussion of the hardware and software required
to use QSDK.

Chapter 8: "Super Listener/Listener/Server Anatomy" , A discussion of the anatomy of
super listener, listener and server processes.

Chapter 1 QSS Server Developer’s Kit

This page intentionally left blank.

Chapter 2 Overview of QSDK Chapter 2 Overview of QSDK

Version 2.0 6/96 © QSS, 1996 5 6 © QSS, 1996 Version 2.0 6/96

Overview of QSDK

QSS Server Developer’s Kit (QSDK) is a toolkit that enables software developers to create
network applications for the HP 3000 that will communicate using the industry standard
TCP protocol. Theses routines are contained in a native mode object module that can be
linked with your HP 3000 applications. In addition to the library for the HP 3000, you get a
Windows DLL and Visual Basic source for optional routines you can use when developing
client applications for Microsoft Windows.

HP 3000 Series 9xx systems are network ready systems. They typically have a network card
(NIC) and software that supports the industry standard TCP/IP protocol. On versions of the
operating system (MPE/iX) 5.0 and later the TCP/IP software is bundled with the operating
system. On systems prior to version 5.0 you purchase the TCP/IP software from HP.

On the HP 3000 there are two application programming interfaces (API) for software to
communicate with the network using TCP/IP. The first is a HP proprietary TCP socket layer
called NetIPC and the second is Berkeley Sockets, a standard application layer for TCP/IP
socket programming. Application programs use these API routines to communicate with
programs running on other systems over the network using TCP sockets.

You can develop server software (daemons/servers) for the HP 3000 with either socket layer
API. The client programs that communicate with your server will not be able to detect the
difference. Most network software written for the HP 3000 use NetIPC since it has been
available for many years. Most recently, with the availability of Berkeley Sockets, some
developers have begun to use the Berkeley Sockets API for their network socket layer.
However, the Berkeley Socket API is geared for programming in ‘c’ and is not easily used
from other languages.

QSDK is an abstraction of TCP socket programming which uses NetIPC. It provides you,
the developer, with a set of powerful subroutines which allow you to access the features of
TCP socket programming without needing to know the particulars of the NetIPC API or
TCP programming. The daemons and servers you develop will be able to communicate with
any client that can communicate using standard TCP sockets.

What’s In QSDK?

The following components are included with QSDK:

This reference manual

NMOBJ file which contains all the toolkit routines.

Microsoft Windows DLL which contains encryption/decryption routines for Windows
based client software.

One developer license for dsSocket, a Visual Basic custom control for TCP/IP
programming using Windows Sockets.

Sample source code in COBOL and Visual Basic 3.0 for sample client and server
programs.

Visual Basic functions for translating HP 3000 data formats (binary, COMP-3).

Chapter 3 Installing QSDK

Version 2.0 6/96 © QSS, 1996 7 8 © QSS, 1996 Version 2.0 6/96

Installing QSDK - HP 3000 Using QSDK

QSDK is installed on your HP 3000 from the tape included in your installation package.
The QSDK installation is simply a matter of restoring the QSDK object file and sample
programs from the tape. The optional DLL, Visual Basic functions and sample client
applications are contained on the enclosed diskette.

Follow these instructions for installing QSDK on your HP 3000:

1. Build the QSDK account

Place the enclosed tape in the tape drive and restore the QSDKBLD.PUB.SYS file.

 :HELLO MANAGER.SYS
:FILE T;DEV=TAPE
:FILE SYSLIST=$STDLIST
:RESTORE *T;QSDKBLD.PUB.SYS;SHOW

:STREAM QSDKBLD.PUB

This job will log on as MANAGER.SYS and will build the QSDK account. No
password is included in the JCL. You will be prompted for your MANAGER.SYS
password(s). Wait for this job to complete.

2. Restore QSDK Files

Put the tape back on-line, then type this command:

:RESTORE *T;@.@.QSDK;KEEP;SHOW

Installing QSDK - PC

The QSDK disk contains a ZIP file that should be copied to your PC system harddrive and
unzipped. The README.TXT file contains the latest information on the PC distribution
files. See Chapter 6 for specifics on the PC files released with QSDK.

Chapter 3 Installing QSDK

QSDK is shipped as a NMOBJ file called QSDK.OBJECT.QSDK. You can link
this file with your application object files to make NM program files. For example:

:LINK FROM=MYSERVER.OBJ,QSDK.OBJECT.QSDK;TO=MYSERVER.BIN;CAP=IA,BA

Super listener and listener processes require PH capability because they create
son processes. Server and client processes do not need usually need PH.

There is no sofware limitation with QSDK to preclude using it in a NM XL file.
However, the distribution license for QSDK does not allow you to freely distribute
the object file to HP 3000 systems that do not have a license for QSDK.

QSDK is written in Pascal/XL and has been extensively tested on the HP 3000
using COBOL II/XL. The parameters are defined so you should be able to call the
routines from any HP 3000 compatible language that supports calling by reference
(all the parameters are defined to be call by reference).

The source code examples are yours to freely use in developing applications that
use QSDK. However, you should not repackage them up and sell them as your
own software. Call us if you want to do any private labelling of the samples.

You can determine the version of QSDK in the object file or linked into any NM
program file by using the utility QSDKLV.PROGRAM.QSDK. Here is how you run
it:

:FILE QSDKOBJ = <file>
:RUN QSDKLV.PROGRAM.QSDK

The version and license information will be displayed on your terminal.

<file> is any NMOBJ or NMPRG file that contains the QSDK library.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 9 10 © QSS, 1996 Version 2.0 6/96

QSDK Reference

This chapter describes the QSDK API and how each routine is used. Example
calling sequences are given for COBOL. The following tables list the available
QSDK API routines for quick reference.

API Summary - Grouped by Typical Use QSDK_CONNECT Connects to a remote system and TCP port number.

Super listener QSDK_START_LISTENER

Listener QSDK_CLOSE_SOCKET
QSDK_CONN_ACCEPT
QSDK_CONN_REJECT
QSDK_CREATE_SERVER
QSDK_CREATE_SOCKET
QSDK_INIT_PROCESS
QSDK_LISTEN
QSDK_START_SERVER

Server QSDK_CLOSE
QSDL_INIT_PROCESS
QSDK_OPEN
QSDK_READ
QSDK_READTRAN
QSDK_WRITE

Miscellaneous QSDK_CONNECT
QSDK_ENCRYPT
QSDK_ERRMSG
QSDK_FILE_XFR
QSDK_GET_SOCKET
QSDK_GIVEUP_SOCKET
QSDK_IPC_D2B
QSDK_KEYCRIPT
QSDK_PAUSE
QSDK_SOCKET_SPECIAL
QSDK_VERSION
QSDK_WRITE_MSG

API Summary - Alphabetical
QSDK_CLOSE Close a connection socket being used by this process.

QSDK_CLOSE_SOCKET Close a listen socket.

QSDK_CONN_ACCEPT Accept a deferred connection.

QSDK_CONN_REJECT Reject a deferred connection.

QSDK_CREATE_SERVER Create (but not activate) a son process which will be used to
communicate over a connection socket to a client.

QSDK_CREATE_SOCKET Create a listen socket for the specified TCP port number.

QSDK_ENCRYPT Encrypt text with a user defined key.

QSDK_ERRMSG Return text descriptions for the error values in the
error_status record.

QSDK_FILE_XFR Opens and transfers a file from the HP 3000 to the client
process.

QSDK_GET_SOCKET Acquire a socket (listen/connection) that was released by
another process.

QSDK_GIVEUP_SOCKET Release a socket (listen/connection) so that another process
can acquire it.

QSDK_INIT_PROCESS Return run parameters and initialize the environment for a
process.

QSDK_IPC_D2B Converts an IP address in dot format to octet bye format.

QSDK_KEYCRYPT Special encryption routine for encrypting a key for use with
QSDK_ENCRYPT.

QSDK_LISTEN Listen for a connection request.

QSDK_OPEN Used by a server to get the connection socket which was
released by the listener.

QSDK_PAUSE Pause the calling process a specified number of seconds.

QSDK_READ Read from a connection socket.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 11 12 © QSS, 1996 Version 2.0 6/96

QSDK_READTRAN Read a formatted transaction from a connection socket.

QSDK_READ_MSG Read a record from the process message file.

QSDK_SOCKET_SPECIAL Handle special requests for a listen/connection socket.

QSDK_START_LISTENER Create and activate a son process which will be a listener.

QSDK_START_SERVER Activate the server process which was created using
QSDK_CREATE_SERVER and release the connection
socket so the server process can acquire it (by calling
QSDK_OPEN).

QSDK_VERSION Return version and licensing information for QSDK.

QSDK_WRITE Write to a connection socket.

QSDK_WRITE_MSG Write a message to a process message file.

API - Specifications (parameter formats)

What follows are the syntax and parameter definitions for the routines contained within
QSDK. All parameters are passed by reference. Integer values are specified as 32 bit
values (full word) even when 16 bit values (half word) would suffice. The routines were
built this way to avoid confusion over full and half word parameters, since it is easier to
remember when they are always the same format. Most of the parameters are simple
integers or record buffers. However, some parameters are complex record structures and
are defined here to avoid having to define them in every routine.

ERROR-STATUS

An array of three (3) integers that is used to return error code and status information by
various QSDK routines.

01 ERROR-STATUS.
03 ERR-CODE PIC S9(9) COMP.
03 ERR-LL PIC S9(9) COMP.

 03 ERR-LL-ID PIC S9(9) COMP.

ERR-CODE QSDK returned error code. Zero is returned for successful
completion. Any non-zero value indicates an error has occurred.

ERR-LL The error code returned by the underlying system routine when an
error occurs.

ERR-LL-ID A value which defines the underlying system routine that has returned
an error.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 13 14 © QSS, 1996 Version 2.0 6/96

OPTIONAL-PARMS

A record structure that contains two sixteen (16) element arrays which are used for for this routine to return parameters for a new connection or a message received from
passing/returning optional information to QSDK routines. another process. This record structure accommodates these two options.

01 OPTIONAL-PARMS.
03 OPTIONAL-FLAG PIC X OCCURS 16 TIMES.
03 OPTIONAL-VAL PIC S9(9) COMP OCCURS 16 TIMES.

OPTIONAL-FLAG Used to pass single byte flags to QSDK routines for selecting
optional subroutine behavior. When numeric values are
needed or returned they are located in the OPTIONAL-VAL
array using the same index as the OPTIONAL-FLAG
parameter.

OPTIONAL-VAL Used to pass/receive optional numeric data. The values are
passed/returned in the same index as the corresponding
OPTIONAL-FLAG.

This information will help you decode the documentation which describes how to use the
OPTIONAL-PARMS parameter for each QSDK routine:

Optional parameters are identified as “I” , “O”, or “I/O” to indicate input, output or
input/output when described in the API syntax.

Flag fields are identified as F-## where ## specifies the index (1-16).

Value fields are identified as V-## where ## specifies the index (1-16).

LISTEN-RETURN

A record structure that is returned by a call to the QSDK_LISTEN routine. It is possible

01 LISTEN-RETURN.
03 SD-SOCKET PIC S9(9) COMP.
03 CLIENT-PORT PIC S9(9) COMP.
03 MSG-LEN REDEFINES CLIENT-PORT

PIC S9(9) COMP.
03 IP-OR-MSG.

05 CLIENT-IP-BYTE PIC X(4).
05 CLIENT-IP-DOT PIC X(16).
05 FILLER PIC X(236).

SD-SOCKET If non-zero then this is a new connection and this contains the
socket descriptor of the connection socket.

CLIENT-PORT The tcp port number of the client who has been connected.

CLIENT-IP-BYTE The ip address of the client who has connected in octet format.

CLIENT-IP-DOT The ip address of the client who has connected in dot format. For
example: 192.6.1.10.

MSG-LEN The length of the received message. This is used when the value
of sd-socket is 0.

IP-OR-MSG The text of the received message. This is used when the value of
sd-socket is 0.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 15 16 © QSS, 1996 Version 2.0 6/96

API - Specifications (syntax)

QSDK_CLOSE

Closes the connection to the client and optionally purges the process message file
associated with the calling process.

Syntax

CALL “QSDK_CLOSE” USING SD-SOCKET, OPTIONAL-PARMS, ERROR-STATUS.

Parameters

SD-SOCKET 32-bit integer (Input)
The socket descriptor which was returned by QSDK_OPEN. This
is the connection socket being used to communicate with the
client process.

OPTIONAL-PARMS optional-parm record (Input)

F-01 M=Purge process message file
V-01 FD of process message file

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
This routine is used by a server process to close the connection to the client. When the
socket is closed all pending read data is discarded and the socket is shutdown. Once this
call is made you cannot communicate with the client process using the specified socket
descriptor.

QSDK_CLOSE_SOCKET

Closes a listen socket. Typically used by a listener or super listener to close the listen
socket created by QSDK_CREATE_SOCKET. Do not use this to close a connection
socket, use QSDK_CLOSE instead.

Syntax

CALL “QSDK_CLOSE_SOCKET” USING SD-LISTEN, GRACEFUL-FLAG,
ERR-CODE.

Parameters

SD-LISTEN 32-bit integer (Input)
The socket descriptor for the listen socket to close.

GRACEFUL-FLAG 32-bit integer (Input)
A flag indicating whether to close the socket with a graceful
(orderly) shutdown. A value of ‘1' indicates graceful (orderly)
shutdown, which is preferred.

ERR-CODE 32-bit integer (Output)
Returned error code. 0 indicates no error occurred.

Discussion
This routine is used to close a listen socket. Listener processes should call this to close
their listen socket. Server processes should call QSDK_CLOSE to close their connection
socket.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 17 18 © QSS, 1996 Version 2.0 6/96

QSDK_CONN_ACCEPT QSDK_CONN_REJECT

Accepts a connection request that was established as ‘deferred’. Rejects a deferred connection request.

Syntax Syntax

CALL “QSDK_CONN_ACCEPT” USING SD-SOCKET, ERROR-STATUS. CALL “QSDK_CONN_REJECT” USING SD-SOCKET, ERROR-STATUS.

Parameters Parameters

SD-SOCKET 32-bit integer (Input) SD-SOCKET 32-bit integer (Input)
The socket descriptor for the connection socket returned by The socket descriptor for the connection socket returned by
QSDK_LISTEN. QSDK_LISTEN.

ERROR-STATUS error-status (Output) ERROR-STATUS error-status (Output)
Returned error status array. Returned error status array.

Discussion Discussion
This routine is used to accept a connection that was setup as deferred. When you request This routine is used to reject a deferred connection request. If you reject a connection
a deferred connection you must accept it before you can read/write to it. request the connection socket is no longer usable.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 19 20 © QSS, 1996 Version 2.0 6/96

QSDK_CONNECT

Opens a connection socket to a remote system for a particular TCP port number. This is
useful if you wish to develop client software that runs on your HP 3000.

Syntax

CALL “QSDK_CONNECT” USING REMOTE-HOST, TCP-PORT,
OPTIONAL-PARMS, SD-SOCKET,
ERROR-STATUS.

Parameters

REMOTE-HOST x(50) (Input)
The name of the remote system you wish to communicate with.
Leave this blank if this is your local HP 3000. This can be either a
properly formatted host name or IP address in dot address
format (192.6.1.1 for example).

TCP-PORT 32-bit integer (Input)
The tcp port number which this socket is associated with. This is
the port number for which the server executing on the HOST-
NAME is using.

OPTIONAL-PARMS x() (Input)

I F-01 Y = Set the socket timeout value. The default is 60
seconds.

I V-01 The amount of time specified in tenths of a second for
timeout. A value of 0 disables the socket timer.

I F-02 Y = Enable no-wait I/O for this socket
V-02 Not used.

SD-SOCKET 32-bit integer (Output)
The socket descriptor for the connection socket created if the call
is successful.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
This routine is used open a connection socket to a server process running on your system
(local) or another (remote) system. This is how you can write client programs which run on
your HP 3000.

You can connect to servers running on the same HP 3000 system by passing blanks for
the remote system name. You must have the LOOP network started with NETCONTROL
for this to work properly. Your client IP address will be communicated as 127.0.0.1.

You must have configured a way for your HP 3000 to determine the IP address of the
remote system. The following are your choices at the present time:

Create directory entries for the remote locations in your NMMGR network directory.

Establish the HOSTS.NET.SYS file which is a database (flat file) of remote system to
IP address translations.

Configure the MPE address resolver (MPE/iX 4.0 or later) which is the file
RESLVCNF.NET.SYS. The resolver acts as a DNS client to whatever DNS server you
have configured. Unfortunately at this time there are no DNS server products available
that run on MPE/iX.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 21 22 © QSS, 1996 Version 2.0 6/96

QSDK_CREATE_SERVER

Uses CreateProcess to create a son process which is a server. This process is not PIN 32-bit integer (Output)
activated by this call. It is activated by QSDK_START_SERVER. The pin of the newly created process.

Syntax ERROR-STATUS error-status (Output)

CALL “QSDK_CREATE_SERVER” USING SERVER-NAME, RUN-PARM, INFO-LEN,
INFO-STRING, OPTIONAL-PARMS, PIN,
ERROR-STATUS.

Parameters

SERVER-NAME X(50) (Input)
Fully qualified program name of process to create.

RUN-PARM 32-bit integer (Input)
Value to pass to the newly created process. Equivalent to the
‘;parm=’ parameter of the run command.

INFO-LEN 32-bit integer (Input)
Length of the info string parameter.

INFO-STRING x() (Input)
Text string to pass to the newly created process. Equivalent to the
‘;info=’ parameter of the run command.

OPTIONAL-PARMS optional-parm record (Input)

I F-01 M= Create process message file for server process
V-01 Not used

I F-02 Priority class for created server process (A,B,C,D,E)
V-02 Not used

Returned error-status array.

Discussion
The created process is not activated by this routine. This is so that you can pre-create any
number of servers from your listener and then when you get a connection request from a
client you use QSDK_START_SERVER to connect everything up.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 23 24 © QSS, 1996 Version 2.0 6/96

QSDK_CREATE_SOCKET

Creates (binds) a listen socket which can be used to listen for connection requests.

Syntax

CALL “QSDK_CREATE_SOCKET” USING SOCKET-NAME, TCP-PORT,
OPTIONAL-PARMS, SD-LISTEN,
ERROR-STATUS.

Parameters

SOCKET-NAME x(16) (Input)
A unique name to give to this listen socket.

TCP-PORT 32-bit integer (Input)
The tcp port number which this socket is associated with. This is
the port number for which listen requests will be honored by this
listen socket. This must be unique on your system.

OPTIONAL-PARMS x() (Input)

I F-01 Y = Set the number of queued (waiting) connections. The
default is 7.

I V-01 The number of queued (waiting) connections.

I F-02 Y = Set the socket timeout value. The default is 60
seconds.

I V-02 The amount of time specified in tenths of a second for
timeout. A value of 0 disables the socket timer.

I F-03 Y = Enable no-wait I/O for this socket
V-03 Not used.

SD-LISTEN 32-bit integer (Output)
The socket descriptor for the listen socket created if the call is
successful.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
This routine is used to create a listen socket for receiving connection requests from client
processes. A tcp port number is considered a unique resource so there can only be one
process that has an open listen socket for a given tcp port number.

No-wait I/O is required if want to use these advanced options:

Listens which return immediately if there is no connection request (IODONTWAIT).

Listen for a connection and/or a message file read at the same time.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 25 26 © QSS, 1996 Version 2.0 6/96

QSDK_ENCRYPT QSDK_ERRMSG

Encrypts/decrypts a text string using a supplied key. The encryption is done in place, Retrieves the text descriptions for the values returned in ERROR-STATUS.
overwriting the original text with the encrypted/decrypted result.

Syntax

CALL “QSDK_ENCRYPT” USING TXT-LEN, TXT-BUF, KEY-LEN, KEY-TXT.

Parameters

TXT-LEN 32-bit integer (Input)
The length of the text string to encrypt/decrypt.

TXT-BUF x() (Input/Output)
The text string to encrypt/decrypt.

KEY-LEN 32-bit integer (Input)
The length of the key text string.

KEY-TXT x() (Input)
The key text string to use in the encrypt/decrypt operation.

Discussion
This routine is used to encrypt/decrypt a text string using a supplied key.

Syntax

CALL “QSDK_ERRMSG” USING ERROR-STATUS, QSDK-ERR-MSG, LL-ERR-MSG,
LL-ID-NAME.

Parameters

ERROR-STATUS error-status (Input)
The error status array.

QSDK-ERR-MSG x(80) (Output)
The error message corresponding to the first word of the error
status array (ERR-CODE).

LL-ERR-MSG x(80) (Output)
The error message corresponding to the second word of the error
status array (ERR-LL).

LL-ID-NAME x(80) (Output)
The name of the low level routine which generated the error.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 27 28 © QSS, 1996 Version 2.0 6/96

QSDK_FILE_XFR ERROR-STATUS error-status (Output)

Opens a file and writes it to the specified socket using MR/NOBUF file processing.
Supports fixed and variable length records. Discussion

Syntax specifically formatted for easy parsing. The file is opened MR/NOBUF and read in 8K

CALL “QSDK_FILE_XFR” USING SD-SOCKET, FILE-NAME, MAX-SIZE,
OPTIONAL-PARMS, ERROR-STATUS.

Parameters

SD-SOCKET 32-bit integer (Input)
The socket descriptor for the connection socket connected to your
client.

FILE-NAME x(50) (Input)
The name of the file to transfer. The name must be formatted as
required by HPFOPEN which means the first and last character
are delimiters and should be the same. For example: &myfile& is
a correctly formatted name.

MAX-SIZE 32-bit integer (Input)
The maximum size for write operations to the socket. This is not
used as an absolute maximum as records are sent in their entirety
and don’t split blocks. The actual bytes sent my exceed this value.
4096 is the largest value you can specify.

OPTIONAL-PARMS x() (Input)

I F-01 R= Record mode. A separate socket write operation is
performed for each record.

B= Block mode. A block of records are send in one
socket write operation.

I V-01 Not used.

I F-02 Y= Enable handshaking with the client.
V-02 Number of seconds to wait for client acknowledgements.

Returned error status array.

This routine is used send a file from the HP 3000 to the client process. The data stream is

(8192) byte chunks for fast operation. Fixed and variable length MPE ascii/binary files can
be processed with this routine. The handshaking protocol is as follows:

1. QSDK_FILE_XFR sends a five (5) byte message “READY” when it is ready to begin
the file transfer. The client should wait and not begin sending until receiving this
message.

2. QSDK_FILE_XFR waits for a two byte message of “OK” prior to sending any data
records.

For example:

Server (QSDK_FILE_XFR) Client

Sends “READY”
Receives “READY”
Sends “OK”

Receives “OK”
Sends data

Receives data
Sends “OK”

The format of transmitted data is as follows:

Len Data Len Data Len Data

Len is a 16 bit integer containing the number of data bytes. This is stored as two bytes in
the data stream. Data is the data and is Len number of bytes in size. The file is
terminated by a Len of zero. Even though QSDK_FILE_XFR sends complete records in
each transmission you cannot guarantee they will be received the same way. TCP
transmissions are guaranteed to arrive in the same sequence as sent, but not in the same
sizes. You must code for this on the receiving end. See the sample QTRANC for sample
logic which correctly decodes the transmission.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 29 30 © QSS, 1996 Version 2.0 6/96

QSDK_GET_SOCKET QSDK_GIVEUP_SOCKET

Retrieves a listen or connection socket by the referenced name. This routine is used by Relinquishes a listen or connection socket by the referenced name. This routine is used by
QSDK_OPEN. It is available for use when custom listener/server applications need to be QSDK_START_SERVER. It is available for use when custom listener/server applications
created. need to be created.

Syntax Syntax

CALL “QSDK_GET_SOCKET” USING SOCKET-NAME, SD-SOCKET, ERR-CODE. CALL “QSDK_GIVEUP_SOCKET” USING SD-SOCKET, SOCKET-NAME, ERR-CODE.

Parameters Parameters

SOCKET-NAME x(16) (Input) SD-SOCKET 32-bit integer (Input)
The name of the socket which you wish to acquire. The socket descriptor for the socket (listen or connection) which

SD-SOCKET 32-bit integer (Output)
The socket descriptor for the socket acquired by this call. SOCKET-NAME x(16) (Input)

ERR-CODE 32-bit integer (Output) process can acquire it (using QSDK_GET_SOCKET).
Returned error code. 0 indicates no error occurred.

Discussion Returned error code. 0 indicates no error occurred.
This routine is used to acquire a listen or connection socket that has been given up by
another process. This is a special purpose routine that can be used to create custom Discussion
applications that pass the socket from one process to another. This routine is used to relinquish ownership of a socket. By giving the socket a name that is

Socket names must be unique so its a good idea to always embed the PIN of a known from one process to another.
process into the name to avoid conflicts.

should be returned to MPE.

The name which should be given to the socket by which another

ERR-CODE 32-bit integer (Output)

known to another process you can use this and QSDK_GET_SOCKET to pass sockets

Socket names must be unique so its a good idea to always embed the PIN of a known
process into the name to avoid conflicts.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 31 32 © QSS, 1996 Version 2.0 6/96

QSDK_INIT_PROCESS Your PIN.

This routine returns the “;info=” and “;parm=” parameters used when this process was DAD-PIN 32-bit integer (Output)
created. The PIN of your father. If you are a server then your father is the

Syntax listener or your session/job main process (JSMAIN).

CALL “QSDK_INIT_PROCESS” USING INFO-LEN, OPTIONAL-PARMS,
INFO-STRING, RUN-PARM, MY-PIN,
DAD-PIN.

Parameters

INFO-LEN 32-bit integer (Input)
Length of the info string parameter.

OPTIONAL-PARMS optional-parm record (Input/Output)

I F-01 M= Open the process message file already created for
this process.

O V-01 Returned FD of the process message file. If the file was
not found then this will be zero.

I F-02 M= Open father’s process message file.
O V-02 Returned FD of your father process message file. If the

file was not found then this will be zero.

INFO-STRING x() (Output)
The “;info=” string used when this process was created. This
buffer must be as large as INFO-LEN.

RUN-PARM 32-bit integer (Output)
Value used in the “;parm=” parameter when this process was
created.

MY-PIN 32-bit integer (Output)

listener and if you are a listener then your father is either a super

Discussion
You can use this in lieu of calling the system intrinsics (JOBINFO) to get the “;info=” and
“;parm=” parameter values. In addition, this routine can open the process message files
which you can use to communicate with other processes.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 33 34 © QSS, 1996 Version 2.0 6/96

QSDK_IPC_D2B QSDK_KEYCRYPT

Converts an IP address from dot notation (192.6.1.1) to byte and decimal format. Can also This routine is used to encrypt a key using a common seed (client IP address).
be used to validate the format of an IP address.

Syntax

CALL “QSDK_IPC_D2B” USING IP-ADDR, IP-BYTE-ADDR, IP-DEC-ADDR,
ERR-CODE.

Parameters Parameters

IP-ADDR x(16) (Input)
The IP address in display format. For example: 192.6.1.1 KEY-LEN 32-bit integer (Input)

IP-BYTE-ADDR x(4) (Output)
The IP address in byte octed format. This is the format used by KEY-TXT x() (Input)
NetIPC routines and is a useful format for doing IP address range The key text string to encrypt.
checking.

IP-DEC-ADDR 16-bit integer X 4 (Output) The IP address of the client in dot notation (as in 192.6.1.10).
A table of 4 16-bit integers which contains the octet value in a
format that can be easily manipulated with COBOL. ENCRYPTED-KEY x() (Output)

ERROR-CODE 32-bit integer (Output)
Error code. 0 = no error detected. The possible errors are: Discussion

1 = IP-ADDR contains invalid character values. This routine can then be used to decrypt the string so it can be used in decrypting

2 = IP-ADDR is formatted incorrectly. communicate encrypted keys without having to ‘trust” each other with hard coded keys.

3 = IP-ADDR contains invalid characters and is formatted
incorrectly.

 -1 = One or more octet values is invalid. The invalid octet
value is identified by the corresponding IP-DEC-ADDR
value being set to -1.

Syntax

CALL “QSDK_KEYCRYPT” USING KEY-LEN, KEY-TXT, IP-ADDR,
ENCRYPTED-KEY.

The length of the key text string.

IP-ADDR x(16) (Input)

The encrypted key text string.

The QSS.DLL contains a corresponding routine which can be used to encrypt a key string.

messages. By using a known seed (client IP address) both client and server can

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 35 36 © QSS, 1996 Version 2.0 6/96

QSDK_LISTEN

Listens for an incoming connection from a client for the specified socket.

Syntax

CALL “QSDK_LISTEN” USING SD-LISTEN, OPTIONAL-PARMS,
LISTEN-RESULT, ERROR-STATUS.

Parameters

SD-LISTEN 32-bit integer (Input)
Socket descriptor for the listen socket.

OPTIONAL-PARMS optional-parms (Input)

I F-01 Y= Override maximum send/rcv size.
I V-01 Maximum number of bytes for send/rcv operations.

I F-02 Y= Ignore timeout errors.
I V-02 The number of timeouts to ignore. A value of 0 means

ignore all timeouts.

I F-02 W= Use iowait (blocking nowait I/O)
V-02 Not used

I F-02 D= Use iodontwait (non-blocking nowait I/O)
V-02 Not used

I F-02 M= Process a read from the process message file or a
connection request using blocking nowait I/O

I V-02 FD of the process message file to read

I F-03 Y= Setup the connection as ‘deferred’
V-03 Not used.

LISTEN-RESULT listen-result record (Output)
Depending upon the results of the routine this will be identifying
information for client making the connection or a message from
another process. The definition of this structure is defined at the
beginning of this chapter.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
This routine is used to listen for a connection request and/or for a message from another
process. This operation is usually a blocking operating in that control is not returned to the
calling process unless a connection is received, a message is read or a network error
occurs.

Some additional issues regarding the use of QSDK_LISTEN:

F-02 values are mutually exclusive, you can only choose one of the options.

The F-02 ‘W’ option is not normally used and was put in place for testing only. It does
work, even if there is no reason to use it since you can get the same result by using F-
02 ‘Y’ with a timeout value of zero (0).

The F-02 ‘D’ option is used to do a no-wait listen for a connection request. This can be
used in more sophisticated listeners to allow a higher degree of parallelism.

Unless otherwise configured, NetIPC sockets have a built-in timeout of 60 seconds.
You can use the F-02 ‘Y’ option to logically ignore these timeouts so you don’t have to
code for them in your listener.

In order to use option F-02 ‘W’, ‘D’, and ‘M’ you need to enable no-wait I/O for the listen
socket when it is created (QSDK_CREATE_SOCKET) or enable no-wait I/O using
QSDK_SOCKET_SPECIAL.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 37 38 © QSS, 1996 Version 2.0 6/96

QSDK_OPEN QSDK_PAUSE

Retrieves the connection socket which has been released by the listener through the use of Pauses the calling process for a specified number of seconds.
the QSDK_START_SERVER routine.

Syntax

CALL “QSDK_OPEN” USING NAME-BASE, OPTIONAL-PARMS, SD-SOCKET,
MY-PIN, ERROR-STATUS.

Parameters

NAME-BASE x(8) (Input)
The base name used by the listener when releasing the
connection socket. If this is left blank then “SOCKET’ is used.

OPTIONAL-PARMS optional-parm record (Input)

I F-01 Y= Configure a timeout value for the connection socket.
I V-01 Timeout value in tenths of a second. Use zero (0) to

disable timeouts for the connection socket.

I F-02 Y= Configure nowait I/O for the connection socket.
V-02 Not used.

SD-SOCKET 32-bit integer (Output)
The socket descriptor for the connection socket which can be
used to communicate with the client process.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
This routine is used by a server to acquire its connection socket that can be used to
communicate with the client process.

Syntax

CALL “QSDK_PAUSE” USING PAUSE-SECONDS.

Parameters

PAUSE-SECONDS 32-bit integer (Input)
The number of seconds to pause.

Discussion
This routine was added for languages like COBOL that cannot call the PAUSE intrinsic
easily because of a lack of support for real data types.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 39 40 © QSS, 1996 Version 2.0 6/96

QSDK_READ

Reads from the connection socket or the process message file. The actual number of bytes read. Will be equal to or less than

Syntax repeated in V-02.

CALL “QSDK_READ” USING SD-SOCKET, READ-LEN, OPTIONAL-PARMS,
READ-ACTUAL, READ-BUFFER, ERROR-STATUS.

Parameters

SD-SOCKET 32-bit integer (Input)
The socket descriptor for the connection socket for which you
wish to read.

READ-LEN 32-bit integer (Input)
The maximum amount of text to read.

OPTIONAL-PARMS optional-parm record (Input/Output)

I F-01 Y=Ignore timeouts that occur while waiting for data to
read.

I V-01 The number of timeouts to ignore. Use 0 to ignore all
timeouts.

I F-01 D=Use iodontwait for the read.
V-01 Not used.

I F-01 M=Read from the socket or the process message file
using nowait I/O.

I V-01 FD of the process message file.

O F-02 M=Read was from the message file.
O V-02 Number of bytes read in the message file. Will be 0 if the

read was from SD-SOCKET.

READ-ACTUAL 32-bit integer (Output)

READ-LEN. Note that for message file reads this value is

READ-BUFFER x() (Output)
Buffer area where read text is placed. This must be as large as
READ-LEN or memory corruption can occur.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
This routine is used by your server to read a message from the client. You can also use
this to read messages from other process.

Some additional issues concerning the use of QSDK_READ:

F-01 values are mutually exclusive, only choose one of the options.

Using F-01 ‘D’ and ‘M’ requires nowait I/O on the connection socket. See
QSDK_OPEN or QSDK_SOCKET_SPECIAL to see how to enable nowait I/O on the
connection socket.

The F-02 values are output only and will be used only when you use the F-01 ‘M’
option.

Unless otherwise configured, NetIPC sockets have a built-in timeout of 60 seconds.
You can use the F-1 ‘Y’ option to logically ignore these timeouts so you don’t have to
code for them in your server.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 41 42 © QSS, 1996 Version 2.0 6/96

QSDK_READTRAN READ-X-LEN 32-bit integer (Input/Output)

Reads from the connection socket a formatted message and buffers up any extraneous
text until the next call to QSDK_READTRAN. READ-X-BUFFER x() (Input/Output)

Syntax complete transaction is stored.

CALL “QSDK_READTRAN” USING SD-SOCKET, TRAN-DEF, OPTIONAL-PARMS,
READ-X-LEN, READ-X-BUFFER,
READ_LEN, READ-BUFFER, ERROR-STATUS.

Parameters

SD-SOCKET 32-bit integer (Input)
The socket descriptor for the connection socket for which you
wish to read.

TRAN-DEF x(8) (Input)
Sentinel characters which define the start and end of the
transaction. Bytes 1-4 are the leading sentinel characters and
bytes 5-8 are the trailing sentinel characters.

OPTIONAL-PARMS optional-parm record (Input)

I F-01 Y=Ignore timeouts that occur while waiting for data to
read.

I V-01 The number of timeouts to ignore. Use 0 to ignore all
timeouts.

I F-02 Y=Strip TRAN-DEF characters when filling READ-
BUFFER.

I V-02 Not-used.

I F-03 Y=Use specified maximum read size. Default is 2048 and
maximum is 2048.

I V-03 Maximum read size in bytes.

Number of remaining bytes from previous read.

Buffer area where data read that has not been returned as a

READ-ACTUAL 32-bit integer (Output)
The actual number of bytes in the transaction. The data is stored
in READ-BUFFER.

READ-BUFFER x() (Output)
Buffer area where the transaction data is placed.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
This routine is used by a server to read a formatted message from the client. Refer to the
discussion of QSDK_READ for additional information pertaining to reading from sockets
and timeouts.

This routine is designed to allow you to issue a read request and not return until a complete
transaction has been read over the network. You use the TRAN-DEF field to define how a
transaction is identified. You must be careful to pick characters that will not occur in your
data stream or unpredictable results can occur.

Depending on system/network load and the way in which the client sends data this routine
may read data which contains more than one defined transaction. In this case the size (in
bytes) of the extra data is stored in READ-X-LEN and the data itself is stored in READ-X-
BUFFER.

Before calling this routine for the first time you should make sure that READ-X-LEN is set
to zero and that READ-X-BUFFER is initialized to spaces.

To avoid memory corruption make sure that READ-X-BUFFER is large enough to handle
any expected overruns.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 43 44 © QSS, 1996 Version 2.0 6/96

QSDK_READ_MSG QSDK_SOCKET_SPECIAL

Reads from the process message file. Performs special operations on sockets whether they are listen or connection.

Syntax Syntax

CALL “QSDK_READ_MSG” USING FD-MESSAGE, READ-WAIT, READ-LEN, CALL “QSDK_SOCKET_SPECIAL” USING SD-SOCKET, IN-BUFFER,
READ-BUFFER, ERROR-STATUS. OPTIONAL-PARMS, OUT-BUFFER,

Parameters

FD-MESSAGE 32-bit integer (Input)
The fd of the process message file. This should have been
opened through a call to QSDK_INIT_PROCESS.

READ-WAIT 32-bit integer (Input)
The number of seconds to wait for a timed read. Setting this to
zero (0) causes an untimed read which will not be satisfied until
there is data available to satisfy the read.

READ-LEN 32-bit integer (Output)
The number of bytes read.

READ-BUFFER x() (Output)
Buffer area where read text is placed. Process message files
return a maximum of 256 bytes.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
You can use this routine to read messages written to your process message from other
processes (usually the listener if you are a server and the super listener if you are a
listener).

ERROR-STATUS.

Parameters

SD-SOCKET 32-bit integer (Input)
The socket descriptor for the listen or connection socket for which
you wish operate upon.

IN-BUFFER x() (Input)
To pass text data to QSDK_SOCKET_SPECIAL. What data and
its format is dependent on the OPTIONAL-PARMS values.
Currently the only value is the trace file name.

OPTIONAL-PARMS optional-parm record (Input/Output)

I F-01 Y=Configure the socket timeout value.
I V-01 The new timeout value in tenths of seconds. Use 0 to

disable timeouts for this socket.

I F-02 Y=Enable nowait I/O. N=Disable nowait I/O.
V-02 Not used.

I F-03 Y=Abort outstanding nowait I/O.
I V-03 Not used.

I F-04 T=Enable tracing. F=Enable full tracing. Q=Quite tracing.
I/O V-04 The length of the trace file name in bytes. Setting this to 0

will have a trace file name assigned for you and its length
returned here.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 45 46 © QSS, 1996 Version 2.0 6/96

I F-05 Y=Set trace file size. QSDK_START_LISTENER
I V-05 The size of the trace file in number of records.

I F-06 Y=Set data length to trace.
I V-06 The size of data to trace in bytes.

I F-07 Y=Return local node name.
O V-07 The returned length in bytes of the local node name.

OUT-BUFFER x() (Output)
Buffer area where the local node name and possible the assigned
trace file name is returned. If both names are returned the trace
file is returned first. Use the V-04 and V-6 values to parse this
returned value.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
Use this routine to dynamically configure the sockets you are using and to enable tracing
when you are attempting to do troubleshooting on your socket transactions.

Uses CreateProcess to create and activate a son process which will operate as a listener.

Syntax

CALL “QSDK_START_LISTENER” USING LISTENER-NAME, RUN-PARM,
INFO-LEN, INFO-STRING,
OPTIONAL-PARMS, PIN,
ERROR-STATUS.

Parameters

LISTENER-NAME X(50) (Input)
Fully qualified program name of process to create.

RUN-PARM 32-bit integer (Input)
Value to pass to the newly created process. Equivalent to the
‘;parm=’ parameter of the run command.

INFO-LEN 32-bit integer (Input)
Length of the info string parameter.

INFO-STRING x() (Input)
Text string to pass to the newly created process. Equivalent to the
‘;info=’ parameter of the run command.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 47 48 © QSS, 1996 Version 2.0 6/96

OPTIONAL-PARMS optional-parm record (Input)

I F-01 M=Create process message file for server process
V-01 Not used

I F-02 Priority class for created server process (A,B,C,D,E)
V-02 Not used

PIN 32-bit integer (Output)
The pin of the newly created process.

ERROR-STATUS error-status (Output)
Returned error-status array.

Discussion
This routine is used to create a listener process from a super listener process. Different
from QSDK_CREATE_SERVER this routine activates the son process so it begins
executing immediately.

QSDK_START_SERVER

Activates a server process after relinquishing the connection socket so the server can
acquire it from calling QSDK_OPEN. This is usually called from a listener process.

Syntax

CALL “QSDK_START_SERVER” USING SD-SOCKET, SERVER-PIN,
NAME-BASE, ERROR-STATUS.

Parameters

SD-SOCKET 32-bit integer (Input)
The socket descriptor for the connection socket which will be
relinquished to the server process.

SERVER-PIN 32-bit integer (Input)
The pin of the server to activate. Positive pin values don’t
suspend the caller, negative pin values suspend the caller.

NAME-BASE x(8) (Input)
The base name used to name the connection socket. This name
must be known by the server process acquiring the socket. If this
is left blank then “SOCKET’ is used.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
This routine is typically called by a listener process to activate the server and pass the
connection socket.

The default operation is to activate the process without suspending the calling process
because the calling is usually a listener which should be not suspended (or it would be
difficult to listen for additional connections!).

To override the default operation and force the calling process to be suspended you
should pass the negative of the server pin (pin = -pin).

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 49 50 © QSS, 1996 Version 2.0 6/96

QSDK_WRITE QSDK_VERSION

Writes to the connection socket. Returns version and license holder information.

Syntax Syntax

CALL “QSDK_WRITE” USING SD-SOCKET, WRITE-LEN, WRITE-BUFFER, CALL “QSDK_VERSION” USING VERSION-TEXT.
OPTIONAL-PARMS, ERROR-STATUS.

Parameters

SD-SOCKET 32-bit integer (Input)
The socket descriptor for the connection socket for which you
wish to read.

WRITE-LEN 32-bit integer (Input)
The number of bytes to write.

WRITE-BUFFER x() (Input)
Buffer area where the text to write to the socket is stored.

OPTIONAL-PARMS optional-parm record (Input)
No optional parameters are in use at this time.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
This routine is used by your server to write a message to the client process.

Parameters

VERSION-TEXT x(66) (Output)
A formatted text string with this breakout:

1-18 Version string
19-58 License holder string
59-66 Expiration date in YYYYMMDD format. Fully licensed,

non-expiring QSDK modules have a zero expiration date.

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 51 52 © QSS, 1996 Version 2.0 6/96

QSDK_WRITE_MSG

Writes a message to a process message file belonging to another process.

Syntax

CALL “QSDK_WRITE_MSG” USING FD-MESSAGE, PIN, WRITE-LEN,
WRITE-BUFFER, ERROR-STATUS.

Parameters

FD-MESSAGE 32-bit integer (Input)
The FD of the process message file. This is usually your father
process whose message file FD is returned by the call to
QSDK_INIT_PROCESS. If you do not know the FD of the
message file, but have the pin of the process you should set this
to zero and pass the PIN in the PIN field. The FD will be returned
in this field if the message could be opened.

PIN 32-bit integer (Input)
The pin of the process who you wish to communicate with by
writing to its process message file. This field is only used if you
pass a zero FD-MESSAGE.

WRITE-LEN 32-bit integer (Input)
The number of bytes to write read.

WRITE-BUFFER x() (Input)
Buffer area where the data to write is located. Process message
files can contain a maximum of 256 bytes.

ERROR-STATUS error-status (Output)
Returned error status array.

Discussion
You can use this routine to write messages to another processes message file, even if you
don’t already have the file opened.

Error Messages

Here is a list of the error codes (ERR-CODE) that may be returned by the various QSDK
routines.

Error Error Description

0 Successful completion (no error)

1 An invalid parameter has been passed

2 The requested TCP port number is already in use

3 There is no network on this system or the network has not been started

4 There are no more sockets available (check NMMGR configuration)

5 The network is being shutdown

6 Could not name the socket

7 The socket must a type ‘listen’ for this operation

8 The socket timer has expired (the timer has ‘popped’)

9 The remote system has aborted the connection

10 The remote system has closed the connection

11 An error has occurred writing to the socket

12 Could not relinquish the socket

13 Could not activate the process

14 An error occurred closing the socket

15 Could not get the connection socket

16 An invalid timeout value was specified

17 No-wait operation on a socket not configured for no-wait I/O

Chapter 4 QSDK Reference Chapter 4 QSDK Reference

Version 2.0 6/96 © QSS, 1996 53 54 © QSS, 1996 Version 2.0 6/96

18 Cannot accept the deferred connection

19 Cannot reject the deferred connection

20 No connection, or error attempting to connect to remote server

21 Fatal error starting listener process

22 Fatal error creating server process

23 Cannot create process message file

24 Cannot open process message file

25 IOWAIT on process message file has failed

26 PIN and FD cannot both be zero

27 The process message file is full

28 An error has occurred writing to the process message file

29 The supplied remote host name is invalid

30 Remote host not found

31 Remote host is unreachable (failure during QSDK_CONNECT)

32 Could not open the file you asked to transfer (QSDK_FILE_XFR)

33 Did not receive an acknowledgement within the specified time

34 Improperly formatted IP address

98 The QSDK demo copy has expired

99 Unknown error

This page intentionally left blank.

Chapter 5 QSDK and Socket Primer Chapter 5 QSDK and Socket Primer

Version 2.0 6/96 © QSS, 1996 55 56 © QSS, 1996 Version 2.0 6/96

QSDK and Socket Primer

This chapter contains definitions and descriptions of the various concepts and topics which
you will encounter while working with QSDK. This is not meant to be an exhaustive treatise
on sockets programming for the HP 30000, for which there is little public documentation.
The majority of information published on socket programming is targeted for UNIX or
Windows platforms. However, due to the fact that TCP is an Internet standard there is a lot
of similarity between platforms.

A Little Background

The entire reason for using TCP socket programming is so that you can get two processes
running on different systems to communicate with each other using a standard that is
dependable and reliable. When you use TCP sockets for this communication you are
using a network (LAN/WAN) since TCP is a protocol that is used to transfer information
over a network. And thanks to the clever technical folks there is now the ability to run TCP
over serial connections so you can do this same communication using modems
(SLIP/PPP).

When you have two programs talking to each other like this you have a general case of
client/server computing. One program acts as the client, asking for information and the
other program, acting as the server, responds with the requested information.

A Brief Socket Overview

A socket is a communication channel that can be used for two processes to talk to each
other. This communication is private between the client and server process such that you
can view a socket as a file or pipe that connects the two processes together. A socket is
actually a layer of abstraction applied to TCP which is a standard protocol for moving
packets of information around networks. You have two choices on the HP 3000 for socket
programming interfaces. NetIPC, the HP proprietary format or BSD Sockets, a more
universal standard. Because both these socket layers are using TCP as the underlying
protocol they appear identical to other processes attempting to communicate with them.
QSDK is an abstraction of NetIPC so it embodies those concepts in lieu of BSD Sockets
concepts. All references to sockets use the NetIPC terminology which is more in line with
MPE terminology than the BSD concepts which are more UNIX like.

Glossary of Basic Terms

Client Process
The unique instance of a program which is communicating with a server process. Client
processes request the connection to the server process using the TCP port number and
host system address (by name or IP address).

Connection Socket
This is a unique socket which is used for the client and server process to communicate with
each other. Once a connection between client and server is established a connection
socket is established that both processes can use.

Host System
The system where the server process is executing. This can be equated to the HP 3000
system where your listener and server programs are executing.

Host System Address
A client process that wants to connect to a server running on a specific system must
identify this system by name or IP address. Host system names can be resolved by either
DNS (or other similar name resolution like WINS) or by using a HOSTS file which contains
a name to IP address resolution table.

Listen Socket
This is a special class of socket that is used to facilitate the connection between two
processes. A listen socket is bound (or created) for a particular TCP port number and is
used to coordinate connection requests from all clients wishing to connect to a server.
On your system you can have only one listen socket for any given TCP port number.

Listener Process
A program which is waiting for a connection request for a particular socket (and therefore
TCP port number) by calling QSDK_LISTEN. A successful call to QSDK_LISTEN returns
a connection socket descriptor which can then be used to communicate with the client
process. QSDK includes a standard listener program called QLISTEN which calls
QSDK_START_SERVER to startup the server process and pass along this socket
descriptor. After starting up the server program then QLISTEN loops back and listens for
the next client process connection.

Chapter 5 QSDK and Socket Primer Chapter 5 QSDK and Socket Primer

Version 2.0 6/96 © QSS, 1996 57 58 © QSS, 1996 Version 2.0 6/96

Server Process
The unique instance of a program which will be communicating with a client process using
QSDK routines. Servers are typically created as son processes to a listener (QLISTEN for
example) and there is one server process for each client communicating over the TCP
socket interface. Server processes call QSDK_READ and QSDK_WRITE to read and
write the socket for communication with the client process.

TCP Port
Each socket must have an address which uniquely identifies it. This identification is
handled through the concept of a port number which is a value from 1-32767. Low order
port numbers are reserved for Internet standard services and application software should
use the higher port numbers (30000+ for example). In essence a TCP port number
identifies the service that is being offered by a server.

Concepts and Anecdotal Comments

This section contains a description of different concepts which you should become familiar
with to make full use of the QSDK for your socket programming. This information is
particular to QSDK, NetIPC and the HP 3000.

Deferred Connection
You can listen for a connection (QSDK_LISTEN) in such a way that the connection is not
completed until you accept it. This is a handy way to introduce security into your listener
program. After a connection request is satisfied you are returned the IP address of the
client who has connected. You could check that IP address against a list of valid address
and reject the connection request. See the routines QSDK_CONN_ACCEPT and
QSDK_CONN_REJECT to see how to accept or reject a deferred connection.

Process Message File
QSDK contains the logic for you to create and read/write message files which are uniquely
identified to each process in the process tree of your session or job. These files are
temporary and have a name of MSG<PIN> where PIN is the PIN of the process. Each
process message file is opened by one reader, the process who has the same PIN number
and any number of writers, the other processes. These files are variable length with a
maximum of 256 byte records. The QSDK routines which manage these files only allow
254 bytes of data because the first 2 bytes are a record length. You can use this feature to
develop communication between your listener and server processes.

Queued Connections
On a busy system there might be a large number of simultaneous client connection
requests that queue up before the listener process can handle them. By default NetIPC
allows for seven (7) queued (or waiting) connections. You can override this value when
you create your listen socket (QSDK_CREATE_SOCKET).

Chapter 5 QSDK and Socket Primer Chapter 5 QSDK and Socket Primer

Version 2.0 6/96 © QSS, 1996 59 60 © QSS, 1996 Version 2.0 6/96

Socket No-Wait I/O
It is possible to perform no-wait I/O operations on sockets (both listen and connection)
without using PM (privileged mode) code. You can use this to create listeners and servers
which have a high degree of parallelism because you will get an immediate return if there
is no connection (or no data to read).

Socket Timeouts
Unlike BSD sockets, NetIPC socket operations by default will timeout after 60 seconds.
This means if you are listening for a connection on a listen socket and no connection
activity occurs for 60 seconds then a timeout error will be generated. Unless you program
for this error as a soft error then you will be shutting down your listener for no good reason!
This also applies to socket reads (QSDK_READ or QSDK_READTRAN).

There are many ways to handle these timeouts, either by direct code or by setting flags in
QSDK. For example, these are ways to handle the situation:

Loop back if you get a timeout error (QSDKERR=8).

Set the flag to ignore the timeout errors forever by passing a value of zero.

Use waited no-wait I/O for your socket operations.

Disable the timeout value for the socket by setting the appropriate flags and values.

Users Are NOT Logged In!
This might be obvious to the reader, but it sometimes escapes even the most astute so it is
mentioned here to help clarify the point. When a client process (say a program written in
VB on your PC) connects to the HP 3000 using sockets there is no log-in or other user
authentication being provided by MPE. This raises the following issues:

These users don’t count against your user count. This doesn’t mean HP won’t ever
figure out a way to do this, but for the time being you get a free ride for these users.

You cannot depend on MPE log on security to control your user access. If the user
has access to the client software he/she can connect to your system. It is up to you to
add some form of user authentication to your application for security purposes.

Each user is sharing the same job/session space that is accessed by your
listener/server process tree. These are usually running in a batch job so whatever
account it is logged into is where those programs have access to. The big side affect
of this is that jcws, variables, and file equations which are job/session global (not
process unique) cannot be used if they can/should be different for each client (user)
running your application.

For example, there can only be one jcw named SITE and it can only have one value.
This means all copies of your server application will return the same value for this jcw.
The same applies to MPE variables and file equations.

You cannot do a showjob to show who is logged on using your applications! You can
however use the HP utility SOCKINFO.NET.SYS and starting in MPE 5.5 there will be a
command to show all socket connections.

Verified Data Transmission/No Size Guarantee
TCP specifications (and HP follows these) are such that you can guarantee the information
sent between client and server will be received in the same order it was sent. However,
you cannot guarantee the data will be received in the same size chunks (very technical
term) as it was sent. In a busy network you might need multiple reads to get the complete
message. This means you must allow for this in your code or you will be unpleasantly
surprised! It is possible to write something that works in your development environment
just fine, but when deployed into production doesn’t work at all. So, to be safe you should
code everything assuming nothing with regard to the data transmission sizes.

Chapter 6 QSDK Samples Chapter 6 QSDK Samples

Version 2.0 6/96 © QSS, 1996 61 62 © QSS, 1996 Version 2.0 6/96

QSDK Samples - HP 3000

The QSDK samples for the HP 3000 are stored in these groups of the QSDK account:

SOURCE COBOL source

OBJECT NM compiled object

PROGRAM NM binary files linked with QSDK.OBJECT

JOB Jcl files for running the samples

The samples, in alphabetical order are:

QCSMPE Server which does MPE commands and ships the results back to the
client (CSMPE Visual Basic client).

QECHO Server which echos the text it receives to the modified version of the
dsSocket sample echo client.

QLISTEN Generic listener which prompts for parameters and can start up any
server.

QUPERL Sample super listener program which can start up any number of
listeners.

QTRANC Client program which can connect to another HP 3000 running the
QTRANS server for sample file transfers.

QTRANS Server which uses QSDK_FILE_XFR to transfer an MPE file to the
client (QTRANC).

You will find sample jobs in the JOB group which run the super listener/listener/server
programs.

QSDK Samples - PC

The PC samples are come zipped in one file called QSDK.ZIP which can be found on the
enclosed diskette or in the file QSDKZIP.PROGRAM.QSDK. Unzip this file into its own
directory on your PC and you will get these files:

VBRUN300.DLL Visual Basic 3.0 run-time

DSSOCK.VBX Run-time Winsock VB custom control from Dolphin Systems, Inc.

ECHO.EXE VB executable for the ECHO client. This is a slightly modified version
of Dolphin Systems, Inc. ECHO sample (changed the port number to
32000).

QCCSMPE.EXE VB executable for the C/S MPE client.

QCCSMPE.ZIP The VB source modules for QCCSMPE.

QSSDLL.DLL QSS encryption routines for the PC.

QSDK.BAS VB source with declares for QSS.DLL and functions for converting HP
data into VB equivalents.

You should copy the DLL files into your \WINDOWS\SYSTEM directory and add the EXE
files to your Windows desktop. Feel free to explore the source code to learn how to write
client software in VB.

Chapter 7 System Requirements Chapter 7 System Requirements

Version 2.0 6/96 © QSS, 1996 63 64 © QSS, 1996 Version 2.0 6/96

System Requirements - HP 3000
QSDK has been written for the HP 3000 series 9xx computer systems. While NetIPC exists
for the Classic (MPE/V) HP 3000 systems, these systems are not supported by QSDK.

Hardware Requirements
The HP 3000 that QSDK will execute on must have a Network Interface Card (NIC) which
allows it connect to a network. All HP 3000 series 9xx systems come with a pre-installed
NIC which can be used for network communications.

Software Requirements
The HP 3000 must have the TCP/IP networking software which can be acquired by either
of these two methods:

Installing any MPE/iX version 5.0 or later has this software bundled with FOS.

Customers on pre 5.0 versions can purchase the product ThinLan 3000/iX (36923A)
which has been reduced in price significantly.

System Requirements - PC
QSDK comes with one developer license for dsSocket from Dolphin Systems, Inc. This
Visual Basic custom control (VBX) is designed to be used on a MS Windows PC that has a
Winsock compatible TCP/IP stack. The following TCP/IP stacks have been successfully
used by QSS and QSDK customers with dsSocket to connect to servers running on the
HP 3000:

Microsoft TCP-32a stack for Windows for Workgroups

Microsoft Windows-95 TCP/IP stack (including dial-up PPP)

Trumpet Winsock dialup SLIP/PPP

WRQ RNS

This page intentionally left blank.

Chapter 8 Super Listener/Listener/Server Anotomy Chapter 8 Super Listener/Listener/Server Anatomy

Version 2.0 6/96 © QSS, 1996 65 66 © QSS, 1996 Version 2.0 6/96

Super Listener/Listener/Server Anatomy
This chapter describes in narrative form what comprises the different types of processes
(programs) you may write using QSDK.

The sample programs included with QSDK are a good source of information you might
helpful in identifying the QSDK calls and order of operation required.

Super Listener
This program is used to be a root process for all the listeners you wish to operate on your
HP 3000 system. Typically it would prompt for a list of listener/server data items and then
use QSDK_START_LISTENER to create a son process for each listener process required.
Each listener would be listening on a unique TCP port number. A super listener is handy in
that it allows all your socket applications to be hosted by one batch job instead of having
separate batch jobs for each listener.

Listener
A listener program is a simple program that will listen for incoming connections which are
passed off to a server process. Listener programs typically operate in a loop which is only
terminated by a fatal networking error. Listener’s typically have this basic flow of operation:

QSDK_INIT_PROCESS
QSDK_CREATE_SOCKET

Loop
QSDK_CREATE_SERVER
QSDK_LISTEN
QSDK_START_SERVER

Until quit_listening

QSDK_CLOSE_SOCKET

Performance is improved if you have pre-created the server process prior to listening for
the next incoming connection. That is why QSDK_CREATE_SERVER doesn’t activate the
newly created process. It gives you a mechanism to pre-create the server and then when
QSDK_LISTEN returns a connection you use QSDK_START_SERVER, which activates
the server process.

Server
Server programs are the true application component of the socket solution you are writing.
QSDK contains generic and freely useable Super Listener and Listener programs which
are easily used in any application. However, the server program is unique to your
application and is where all the intelligence of your application resides. It might be
responding to requests by reading data from a TurboImage database or maybe reading a
KSAM file. Whatever processing it does do, the main form of communication to the client
process is through the QSDK subroutimes. A typical server program will have this basic
flow of execution:

QSDK_INIT_PROCESS
QSDK_OPEN

Loop
QSDK_READ or QSDK_READTRAN

...application specific logic

QSDK_WRITE

Until done_processing

QSDK_CLOSE

Chapter 8 Super Listener/Listener/Server Anotomy Chapter 8 Super Listener/Listener/Server Anatomy

Version 2.0 6/96 © QSS, 1996 67 68 © QSS, 1996 Version 2.0 6/96

Process Tree
This is what a typical process tree would look like when using Super
Listener/Listener/Server processes:

Super Listener

Listener (port a)

Server #1
...

Server #n

Listener (port b)

Server #1
...

Server #n

Listener (port c)

Server #1
...

Server #n

This page intentially left blank.

